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Cropland Data Layer (CDL; Boryan et al., 2011)
Administrative data and remote sensing images (not available in June)
are used as inputs to create the crop specific land product
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Objectives

Early crop classification (June) would be valuable to NASS for a
variety of operational purposes

An Early Season CDL (ESCDL) has been recently developed
at 10-m resolution using Sentinel-2 images before administrative
data become available

Uncertainty layers can provide information on the stability of the
classification results showing areas that might be either
misclassified or very challenging to model
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Classification approach
Bootstrap methods (Efron and Tibshirani, 1994) provide the opportunity
to study the predictive distribution for a given classifier
Classification results y∗ are computed as

y∗ = arg max
k∈{1,...,K}

p̂k

where K denotes the total number of classes

p̂k represents the prediction frequency of the class k
defined as

p̂k =
1

B

B∑
b=1

1I{k}(ŷb)
where

B denotes the total number of bootstrap iterations

ŷb represents the predicted class for the bootstrap iteration b

1I{k}(ŷb) is the indicator function returning 1 if ŷb = k, and 0
otherwise
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Uncertainty assessment

The standardized empirical entropy is a measure of uncertainty
for y∗, and it is computed from the predictive distribution as

Ĥ =
−1

logK

K∑
k=1

p̂k log p̂k

where K denotes the total number of classes

p̂k represents the prediction frequency of the class k

The quantity Ĥ reflects the randomness of the empirical predictive
distribution used to generate y∗ rather than measuring its
predictive accuracy
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Implementation of the classification algorithm
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Early season crop classification for Illinois

Classification settings used for training

I 16 bootstrap iterations

I 5,000 data points per training set

I 16 trees per forest trained at 90 m

I 2,500 random points per tree

About 18 hours are required to classify the full state of Illinois
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Crop classification in 2019

ESCDL (left) and uncertainty (right) layers at 10-m in June

End of season CDL at 10- (left) and 30- (right) m resolution
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Early classification accuracies (June)
The overall accuracy, and the producer and user accuracies for
both corn and soybeans are computed with administrative data
from Farm Service Agency (FSA)

Producer accuracy = True neg./
(
True neg. + False pos.

)
User accuracy = True pos./

(
True pos. + False neg.

)
Table: Accuracies (%) for ESCDL at 10-m resolution in Illinois

Producer User
Year Overall Corn Soybeans Corn Soybeans
2017 82.14 89.90 74.61 78.99 87.56
2018 83.80 90.80 77.73 80.28 88.66
2019 78.85 83.21 85.40 80.61 77.41
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Conclusion

I Crop identification in June, which is early in the phenological
cycle for corn and soybean in Illinois, is difficult; however, the
uncertainty layer provides useful information to identify fields
in which greater classification uncertainty occurs.

I The production and use of historical crop rotation patterns
at 10-m resolution has been a necessary step in providing
more accurate classification results

I Preliminary results show the potential of the ESCDLs in
current and future NASS operations
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Thank you!

Questions?

Luca Sartore, PhD lsartore@niss.org

Claire Boryan, PhD claire.boryan@usda.gov
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